
A Module For Measuring Expectations in

Laboratory Experiments

Nicolás Aragón∗

UC3M
Rasmus Pank Roulund†

Danmark’s NationalBank

August 20, 2019

Abstract

This paper presents a elicitation tool for economic experiments based
on Harrison et al, 2017. The tool is user-friendly and enables subjects to
forecast the movements of a continuous or discrete variable. The software
can address important issues present while eliciting beliefs, such as hedg-
ing, risk attitudes and intensity of beliefs. The module is easy to integrate
with HTML-based experimental software kits such as oTree (Chen et al.,
2016)

1 Introduction

Expectations play a central in many economic phenomena, both in microeco-
nomics, macroeconomics and finance. Though important, rigorous empirical
analysis is particularly challenging given that expectations are not directly ob-
servable. It is not surprising, therefore, that expectations have come to be
analyzed heavily in experimental settings, where elicitation seems possible.

The literature has normally attempted to obtain point estimates of forecasts
and, at most, a confidence band. Accuracy is normally incentivized by using
monetary rewards. However, even in an experimental setup carefully eliciting
expectations represents challenges.

First, by requesting agents to give a point estimate with a confidence band,
there is often an implicit assumption that expectations follow a symmetric dis-
tribution, e.g. a uniform distribution. This leaves out the possibility that agents
may have beliefs over two possible scenarios disjointly (for example, fundamen-
tal and bubble values in an asset market). Thus, a point estimate leaves valuable
information out of the study and may even bias the elicited belief. Moreover, it

∗Corresponding author. E-mail: naragon@econ.uc3m.es
†E-mail. rasmus@pank.eu

1

does not provide information on second moments of expectations, i.e, the role
of confidence in a forecast. Second, if subjects need to perform more than one
task and are incentivized for both, they may choose to diversify risk between
the activities, thus hedging and distorting the elicited beliefs, [Armantier and
Treich, 2013]. For instance, if agents need to trade assets and provide forecasts,
they may trade at a high value and report expectations at a low value, thus
ensuring a less variable payoff. The literature has normally avoided giving large
payments for expectations, as to not distort choices via hedging. However, if
the objective of the study is to carefully analyze expectations, it can be ar-
gued that the reporting of beliefs needs to be incentivized with large expected
payoffs. Finally, risk perceptions may change the reported beliefs of subjects.
For instance, more risk averse agents tend to report “flatter” distributions than
their true beliefs [Harrison et al., 2015].

In this paper we present an open source JavaScript module that enables a clean
elicitation of a distribution of beliefs of a discrete or continuous variable, us-
ing the method laid out in Harrison et al. [2017]. It allows to control for risk
attitudes and hedging possibilities. The module is graphically appealing and
user-friendly. It easily integrates with the new wave of HTML-based experi-
mental software, such as oTree [Chen et al., 2016]. It has been successfully used
in asset market experiments in Barcelona [Aragón and Pank Roulund, 2019],
where it was verified that participants felt comfortable with the software and
learned to use it quickly.

The source of this module can be found at https://gitlab.com/pank/forecast.js.
Contributions, requests and improvements are welcome and can be submitted
via the issue tracker there. The rest of the paper is organized as follows. Section
2 describes the theoretical background that explains the design choices for the
module. Section 3 explains how to use the module in an experiment. Section
4 shows examples of the sort of data that has been collected with forecast.js.
Section 5 analyzes the learning curve for users and the ease of use. In the
appendix we present a standalone HTML demo. An online oTree version can
be found on the module’s Gitlab page.

2 Background

In this section the theory and background literature that has led to the de-
sign choices of the forecast.js module are presented. The principal task of the
module is to elicit subjective expectations about a particular event, such as the
movement of a continuous or discrete variable. A typical example would be the
price of an asset in a future period, but the module can be applied to any other
scenario, such as quantities to be produced or voter turnout.

Fundamentally, expectations are subjective probabilities, meaning the ‘’degree
of belief regarding the likelihood of events” [Karni, 2014]. As such, the subjective

2

probabilities in which we are interested follow the usage proposed by Savage
[1954] and others before. See Karni [2014] for a full treatment of the historical
developments of subjective probabilities.

2.1 Theoretical Considerations

In the forecast.js module, participants report a probability mass function charac-
terized by {rk}Kk=1 where K is the number of intervals in a discretized variable
of interest. The sum over the grid points equals one, ΣK

k=1rk = 1, as it is a
probability distribution. Once a participant’s forecast distribution is known, a
scoring rule needs to be used under the assumption that interval j contains the
ex post realized value of the measured variable. A key element to properly elicit
expectations is a scoring rule.

A scoring rule is a tool to map the elicited expectations into a score once the
accuracy of the expectation is known. Scoring rules may be used to incentivize
forecasters to reveal their “true” beliefs in addition to increasing their stakes
and effort in the task. A scoring rule must provide incentives such that the
participants can maximize their expected outcome by revealing their true beliefs.

In addition to showing the mathematical aspect of eliciting expectations, Savage
[1954] also discusses a number of issues with respect to eliciting expectations
using scoring rules. A particularly interesting scoring rule for the purpose of
experimental economics is the quadratic scoring rule (QSR) first proposed by
Matheson and Winkler [1976]. As Harrison et al. [2017] show, the QSR—and
any proper scoring rule for that matter—has a number of useful properties as
shown below. We denote the reported beliefs as {rk}Kk=1and the true beliefs as
{qk}Kk=1. The QSR has the following properties1

1. A participant only reports positive expectations about a specific event,
e.g. ri > 0, if his or her true belief of the outcome is positive, i.e. qi > 0.

2. If a risk-averse or risk-neutral participant believes two events are equally
likely, say qi = qj , then the reported expectations are the equal, i.e. ri =
rj .

3. If a risk-averse or a risk-loving participant report the same expectations
for two events, e.g. ri = rj , then the true beliefs are also equal, qi = qj .

4. If a participant’s true beliefs are represented by a symmetric distribution
then the means of the reported beliefs and the true beliefs are equal. This
is true for unimodal and multimodal distributions alike.

5. If the participant’s reported expectations are a symmetric distribution,
then the true belief distribution is also symmetric.

1See Harrison et al. [2017] for further details.

3

6. The more risk-averse a participant is, the more the reported distribution
will resemble a uniform distribution with the support of the true distribu-
tion of beliefs.

In addition, Harrison et al. [2017] report that the reported distributions are
“very close” to the true subjective distributions for a wide range of empirically
plausible risk attitudes, provided individuals are Expected Utility Maximizers.
The discretized version of the QSR can be expressed as follows [Harrison et al.,
2017]:

sj(r) = κ
[
α+ β

(
2× rj − ΣK

k=1r
2
k

)]
. (1)

Here, κ, α and β are parameters. The scoring rule can be configured directly in
the forecast.js module. Parameters α and β penalize spread forecasts, and κ is
a scaling parameter.

There are two main issues to address when eliciting beliefs: risk attitudes and
the possibility of distorted beliefsdue to hedging.

Hedging arises when the agent needs to perform more than one task. For exam-
ple, in Aragón and Pank Roulund [2019], participants need to make transactions
and forecast prices; and both activities are rewarded. Hanaki et al. [2018] show
that subjects indeed show different behavior when they need to both trade and
make forecasts. Thus, a payment based on either forecasting or trading perfor-
mance chosen randomly at the end is better than paying subjects based on both.
In this way, subjects need to put maximum effort into both tasks. The soft-
ware allows to randomize at the end whether the participants are paid by their
transaction efforts or by their forecasting efforts. The parameter κ in Equation
(1) can be used achieve this. This is further discussed in Section 3.1.

Secondly, risk attitudes may affect the reported beliefs. In particular, risk averse
agents tend to report “flatter” distributions than their true beliefs. Even though
the levels of risk aversion in the laboratory seem to be low as to significatively
distort beliefs, a method of binary lotteries [Harrison et al., 2015] can risk-
neutralize subjects enabling the elicitation of beliefs under more general prefer-
ences. The software can be easily adapted to perform this task by converting
the points into lottery tickets.

3 Using the module

This section shows how the forecast.js module is used and how it may be adapted
to the needs of individual experimenters. The main purpose of the module is to
enable experimenters to easily obtain measures of a participant’s beliefs about
the movement of a continuous or discrete variable. By default, this is assumed
to be a price.

The forecast module is written in JavaScript and is therefore supported in all
major browsers, such as Mozilla Firefox and Google Chrome. The d3.js SVG

4

Presetdistributions

Reset flat

tall flat

flat single peak

tall single peak

50-50

flat twin peak

tall twin peak

tallest twin peak

Copy to previous

empty plots

Copy to following

empty plots

use custom A

set custom A

use custom B

set custom B

[0
–
1
0
]

[1
1
–
2
0
]

[2
1
–
3
0
]

[3
1
–
4
0
]

[4
1
–
5
0
]

[5
1
–
6
0
]

[6
1
–
7
0
]

[7
1
–
8
0
]

[8
1
–
9
0
]

[9
1
–
1
0
0
]

[1
0
1
–
1
1
0
]

[1
1
1
–
1
2
0
]

[1
2
1
–
1
3
0
]

[1
3
1
–
1
4
0
]

[1
4
1
–
1
5
0
]

[1
5
1
–
1
6
0
]

[1
6
1
–
1
7
0
]

[1
7
1
–
1
8
0
]

[1
8
1
–
1
9
0
]

[1
9
1
–
2
0
0
]

[2
0
1
–
2
1
0
]

[2
1
1
–
2
2
0
]

[2
2
1
–
2
3
0
]

[2
3
1
–
2
4
0
]

[2
4
1
–
2
5
0
]

[2
5
1
–
2
6
0
]

[2
6
1
–
2
7
0
]

[2
7
1
–
2
8
0
]

[2
8
1
–
2
9
0
]

[2
9
1
–
3
0
0
]

[3
0
1
–
3
1
0
]

[3
1
1
–
3
2
0
]

[3
2
1
–
3
3
0
]

[3
3
1
–
3
4
0
]

[3
4
1
–
3
5
0
]

[3
5
1
–
3
6
0
]

[3
6
1
–
3
7
0
]

[3
7
1
–
3
8
0
]

[3
8
1
–
3
9
0
]

[3
9
1
–
∞

]

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Price

%
Points allocated: 0%

Figure 1: Initial plain canvas presented to subjects.

is the primary library2 As it is a simple JavaScript module, it can be used
with experimental toolkits utilizing web technologies, such as oTree [Chen et al.,
2016]. The module makes it possible for participants in economic experiments to
easily produce a visual representation of their beliefs, in the form of a probability
mass function, by drawing it with their mouse.

When participants are first presented with the tool they observe a ‘’blank can-
vas” as shown in Figure 1. Along the primary axis, the value of the variable
is shown. In the example, the measured variable is the price of asset shares.
The domain of the canvas in the picture is [0, 400]. The range can be changed
by setting the variables xmin and xmax before loading the module. The picture
contains 40 bins, meaning that each bin covers a price range of 10. The number
of bins along the primary axis is determined by the variable xbins, which can
be set before loading the module. The bin width is automatically calculated
based on xmin, xmax and xbins. By default, the name of the primary axis is
“Price”, but this can be changed by setting the variable xname. The number
of bins on the secondary axis can be controlled by setting the variable ybins.
The default value is 20, meaning that participants have 20 tokens to allocate.
In other words, each token represents 5% confidence in the bin. To make the

2SeeBostock et al. [2011].

5

Preset distributions

Reset flat

tall flat

flat single peak

tall single peak

50-50

flat twin peak

tall twin peak

tallest twin peak

Copy to previous

empty plots

Copy to following

empty plots

use custom A

set custom A

use custom B

set custom B

[0
–
1
0
]

[1
1
–
2
0
]

[2
1
–
3
0
]

[3
1
–
4
0
]

[4
1
–
5
0
]

[5
1
–
6
0
]

[6
1
–
7
0
]

[7
1
–
8
0
]

[8
1
–
9
0
]

[9
1
–
1
0
0
]

[1
0
1
–
1
1
0
]

[1
1
1
–
1
2
0
]

[1
2
1
–
1
3
0
]

[1
3
1
–
1
4
0
]

[1
4
1
–
1
5
0
]

[1
5
1
–
1
6
0
]

[1
6
1
–
1
7
0
]

[1
7
1
–
1
8
0
]

[1
8
1
–
1
9
0
]

[1
9
1
–
2
0
0
]

[2
0
1
–
2
1
0
]

[2
1
1
–
2
2
0
]

[2
2
1
–
2
3
0
]

[2
3
1
–
2
4
0
]

[2
4
1
–
2
5
0
]

[2
5
1
–
2
6
0
]

[2
6
1
–
2
7
0
]

[2
7
1
–
2
8
0
]

[2
8
1
–
2
9
0
]

[2
9
1
–
3
0
0
]

[3
0
1
–
3
1
0
]

[3
1
1
–
3
2
0
]

[3
2
1
–
3
3
0
]

[3
3
1
–
3
4
0
]

[3
4
1
–
3
5
0
]

[3
5
1
–
3
6
0
]

[3
6
1
–
3
7
0
]

[3
7
1
–
3
8
0
]

[3
8
1
–
3
9
0
]

[3
9
1
–
∞

]

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Price

%

5

15

20

15

5 5

10

5

Points allocated: 80%

Figure 2: An intermediate forecast. The module warns the user that the forecast
is not complete until all “tokens” have been allocated. have been allocated

elicitation intuitive for the participant, it is suggested that this value be kept as
a multiple of 5. As the module is meant to produce a probability mass function,
the range is fixed at [0%, 100%]. Nonetheless, the name of the secondary axis
can be changed by setting the yname variable. The size of the canvas, measured
in pixel 3 can be set using the variables fheight and fwidth, representing height
and width respectively.

Participants can draw probability mass functions as shown in Figure 2 by using
the mouse. The black bars denote the expectations of the forecaster. Above
the tokens, the percentage value corresponding to the height of the bar in per-
centage terms is displayed, representing the confidence. It is possible to drag-
and-drop the bars along the primary axis, or to change the height of individual
bars by clicking on the tokens. The module is also endowed with customizable
pre-configured probability mass functions, making it quicker for participants to
forecast. It is also possible to save a specific forecast to use later. The forecast
can be reset or finalized using the respective buttons.

3Note that this refers to a so-called “CSS pixel”, as opposed to the more familiar physical
pixels. CSS pixels vary in size depending on the device, as explained by Chien and Nyman
[2013]

6

[0
–
1
0
]

[1
1
–
2
0
]

[2
1
–
3
0
]

[3
1
–
4
0
]

[4
1
–
5
0
]

[5
1
–
6
0
]

[6
1
–
7
0
]

[7
1
–
8
0
]

[8
1
–
9
0
]

[9
1
–
1
0
0
]

[1
0
1
–
1
1
0
]

[1
1
1
–
1
2
0
]

[1
2
1
–
1
3
0
]

[1
3
1
–
1
4
0
]

[1
4
1
–
1
5
0
]

[1
5
1
–
1
6
0
]

[1
6
1
–
1
7
0
]

[1
7
1
–
1
8
0
]

[1
8
1
–
1
9
0
]

[1
9
1
–
2
0
0
]

[2
0
1
–
2
1
0
]

[2
1
1
–
2
2
0
]

[2
2
1
–
2
3
0
]

[2
3
1
–
2
4
0
]

[2
4
1
–
2
5
0
]

[2
5
1
–
2
6
0
]

[2
6
1
–
2
7
0
]

[2
7
1
–
2
8
0
]

[2
8
1
–
2
9
0
]

[2
9
1
–
3
0
0
]

[3
0
1
–
3
1
0
]

[3
1
1
–
3
2
0
]

[3
2
1
–
3
3
0
]

[3
3
1
–
3
4
0
]

[3
4
1
–
3
5
0
]

[3
5
1
–
3
6
0
]

[3
6
1
–
3
7
0
]

[3
7
1
–
3
8
0
]

[3
8
1
–
3
9
0
]

[3
9
1
–
∞

]

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Price

%

5

15

20

15

5 5

10 10 10

5

9 9 9 9 9 9 9 9

1
0

1
2

1
3

1
2

1
0 9 9 9 9 9

1
0

1
1

1
1

1
1

1
0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 Bin

earnings

Figure 3: A finalized forecast with the implied scores shown at the top of the
screen.

Figure 3 displays a finalized forecast. A forecast can only be finalized once all
tokens have been allocated by the forecaster. At the top of the canvas, the score
for each bin is displayed, given the scoring rule and the forecaster’s distribu-
tion. The forecaster is free to change his or her forecast after observing the
scores. This can be done by clicking the “edit” button (not shown). Alterna-
tively, the forecaster can accept the forecast and move on to the next stage of
the experiment. The score of a specific bin typically depends on the shape of
the entire forecast distribution. Thus, it can only be calculated once the dis-
tribution has been finalized. By displaying the scores directly above each bin,
the experimenter can focus on explaining the broad mechanism of the scoring
rule (i.e, penalizing dispersion and increase in accuracy) rather than to focus
on the mathematical details.4 By default, the quadratic scoring rule is used by
the forecast.js module, but any scoring rule can be used. To apply a different
scoring rule, the experimenter can set the variable scoring rule to a function
accepting two arguments. The first argument is an index of the distribution to
be measured (corresponding to j in Equation 1), while the second argument is
the distribution. For instance, to use the logarithmic scoring rule,

sj(r) = log(rj)

it is sufficient to set,

scoring rule=function(j,r)return(Math.log(r[j]));

4This approach was also taken by Harrison et al. [2017].

7

0
50

0
1,

00
0

1,
50

0

A B C D E

excludes outside values

cash_earnings2 forecast_earnings2

Figure 4: Payment distributions across sessions. Parameters are α = 6, β = 14
in all sessions. κ = 4 in sessions C, D and E, and κ = 2 in sessions A and B.

3.1 Calibration

There are three main parameters in the QSR to be calibrated in the module.
First, α and β must provide incentives for accurate forecasts. In that way,
they need to penalize spread forecasts and reward accuracy. In Aragón and
Pank Roulund [2019], α and β are chosen such that payments are either zero
or slightly negative in very spread out forecasts. Regardless, in an experiment
when forecasting task is repeated, final negative payments are very unlikely.

Secondly, the parameter κ can be used to avoid hedging when participants must
do more than one task. This is achieved by rewarding participants randomly for
either one of the activities. To do so, κ must be calibrated so that the expected
payment under both activities is the same. In Figure 4, payments are presented
transactions and forecasting. The amount of cash in the economy is fixed in
expected terms, as there are the initial endowments of each participant and the
expected dividends times the number of periods. Aragón and Pank Roulund
[2019] use pilot sessions to calibrate average payments. Figure 4 shows average
payments under both tasks for different parameters levels. As we can see, a
value of κ of 4 under these conditions generates equal expected payments for
participants under both tasks.

3.2 Accessing the Data

As the expectations about the future movement of the variable in question are
elicited, the values must be collected and stored. Typically, the experimental
software will take care of storing the data once it knows how to collect it. The

8

forecast.js module has two main outputs. The first one is an array represent-
ing the distribution of expectations that has been elicited. This is a standard
probability distribution summing to one. It has the same number of elements as
there are bins along the primary axis. The second output is a vector of scores,
containing an individual score for each bin, assuming that the bin contains the
correct value ex post. To illustrate, consider an experiment where a participant
forecasts some value over six bins. Consider the following example of a forecast,

r̂ = (0, 0.15, 0.35, 0.35, 0.15, 0) . (2)

In this example, the participant states that the probability of the true value
materializing in the interval represented by the second bin is 15%, and so forth.
This value is stored as the string =[0, 0.15, 0.35, 0.35, 0.15, 0] by fore-
cast.js. By default, the distribution is stored in the dist variable. The name
of the storage field can be changed by setting the variable dist var prefix.
If the participant is asked to do more than one forecast, they will be stored in
the variables dist1, ..., distn (see Appendix for details). Scores are also
stored in a variable named, by default,score. The prefix can be changed by
setting the variable score var prefix before loading the forecast.js module.
Using the quadratic scoring rule with α = β = 10, and using the above example
distribution, the scores of r̂ would be (7, 10, 14, 14, 10, 7). These would be stored
in the score variable as ="[7, 10, 14, 14, 10, 7]".

4 The generated data

This section illustrates the type of data that is generated with the forecast.js
module. We first show an example of a forecast series generated with the module
and then turn to the time consumption of the usage of the module. As the timing
data shows, participants are generally quick at learning how to use the module
and at making forecasts. Finally, we turn to the precision of module over time,
to see to what extent learning takes place.

We use data from Aragón and Pank Roulund [2019]. In that experiment, traders
are asked to predict the movement of the asset price at the beginning of each
round, i.e. a one-period-ahead forecast. The experiment follows the structure of
a standard experimental market [Smith et al., 1988]. The price is determined via
a call market for a single asset. The asset pays a random dividend each round,
with an expected value of 12 each period. The fundamental value of the asset is
determined as f(t;T) = 12(T + 1− t) where T is the total number of rounds in
the market and t is the current round. In these markets, prices typically tend
to start below the fundamental value, increase above it, and finally burst to a
level below it [Palan, 2013].

Figure 5 illustrates the predictions of a participant throughout an entire experi-
ment. The vertical line displays the realized equilibrium price and the histogram

9

Market 1 Market 2

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15

0 50 100 150 200 250 0 50 100 150 200 250

50
100

50
100

50
100

50
100

50
100

50
100

50
100

50
100

50
100

50
100

50
100

50
100

50
100

50
100

50
100

Price

Pc
t.

Figure 5: An example of a participant’s predictions. The black histogram corresponds to the price expectations
of the participant, and the thin, red vertical line corresponds to the ex post realized price.

the participant, who, in turn, was scored using a quadratic scoring rule. The graph illustrates
the type of data that can be elicited with the forecast.js module.

In this particular example, the participant is not certain about the exact range of the price
in the first period of market 1 (the left column), and thus chooses a disjoint probability mass
function. However, after the second period, the participant ceases to use disjoint distributions.
The participant has positive beliefs in the right price brackets for all remaining periods. In
general, the participant also becomes more confident about the price development from period
1 to period 11, in the sense that the range of the distribution is overall decreasing. After market
1 crashes in period 11, the participant manages to correctly predict the price again. In market
2, the participant generally manages to correctly predict the price between period 2 and 6, and

11

Figure 5: Example of individual expectations. The black histogram corresponds
to the price expectations of the participant, and the thin, red vertical line cor-
responds to the ex post realized price.

10

illustrates the participant’s forecast. The participant took part in an experiment
with two consecutive markets, each consisting of 15 periods. Market 1 is shown
in the left column and Market 2 is shown in the right column. Each line corre-
sponds to a round in the market. In the example, the bin width is 10 points,
corresponding to a confidence of 5%. This means there were 20 tokens to be
allocated by the participant, who, in turn, was scored using a quadratic scoring
rule. The graph illustrates the type of data that can be elicited with the fore-
cast.js module. In this particular example, the participant is not certain about
the exact range of the price in the first period of market 1 (the left column),
and thus chooses a disjoint probability mass function. However, after the second
period, the participant ceases to use disjoint distributions. The participant has
positive beliefs in the right price brackets for all remaining periods. In general,
the participant also becomes more confident about the price development from
period 1 to period 11, in the sense that the range of the distribution is overall
decreasing. After market 1 crashes in period 11, the participant manages to cor-
rectly predict the price again. In market 2, the participant generally manages
to correctly predict the price between period 2 and 6, and again from period 11
until the end of the market.

While this particular participant tends to spread his or her forecasts over two
to three bins, at times (s)he does use wider expectation distributions, such
as in period 3 in both markets. Often, one bin, not necessarily the median,
receives more weight than other bins, as shown in period 13 in market 2. As
such, the example illustrates to what extent it is possible to gather more detailed
information about the participant’s expectations, compared with when imposing
e.g. a fixed deviation of the distribution.

4.1 Timing Considerations

An important aspect of the forecast.js module is that it is quick to use for
participants, so as not to delay the experiment. This means that experimenters
can elicit full expectation distributions from participants without a big toll on
the duration of the experiment. Moreover, the results show that the elicitation
time is decreasing as the participants become more accustomed to it, lowering
the total time costs if an experimenter plans to elicit expectations several times.

4.2 Understanding Questions

We propose two sets of understanding questions to be used with this module
as to make sure participants understand the tool. The HTML version of these
questions can be found in the Gitlab page of the module, and can be easily
implemented in oTree-based experiments.

The first set of questions requires the participants to get familiar with the tool.
It requires them to put a certain amount of tokens in certain prices and explains

11

0
50

10
0

15
0

20
0

A B C D E

excludes outside values

time_q2 time_q1

Figure 6: A box plot of time spent (in seconds) on the understanding questions.

the meaning. For example, they are asked to put half of the tokens in the bin
corresponding to a price of 100, and it is explained that this means they think
that half of the times the price will be that one. Subsequently, participants
are asked to drag the created distributions, and are required to modify a preset
distribution. The second set of questions requires students to understand the
earnings they would get once a forecast is finalized. The time taken to answer
these questions in the Aragón and Pank Roulund [2019] experiment is shown in
Figure 6. Overall, it takes few minutes for the participants to get acquainted
with the tool.

4.3 Timing over time

Figure 7 displays a box and whisker diagram for the time spent on eliciting ex-
pectations in each round in the Aragón and Pank Roulund [2019] experiment.
The lower hinge of the box corresponds to the lower quartile of the forecast-
ing duration, the middle line is the median and the upper hinge is the upper
quartile. The whiskers correspond to the largest (smallest) observation at most
1.5 times the interquartile range (i.e. the height of the box) away from the top
(bottom) hinge. The line is a simple linear trend showing that, on average,
participants become faster at using the module over time. As the graph shows,
most participants use between 72 and 110 seconds in the first round where they
use the tool. The mean and the median are 92 and 88 seconds respectively. Af-
ter the first period, the median time generally decreases. One important caveat
is that we cannot disentangle to what extent the time is decreasing due to in-
creased familiarity with the module and to what extent it is decreasing because
participants understand the game better. In a regression setup we can partially
control for characteristics of the underlying experimental data.

12

30

60

90

120

150

5 10 15 20 25 30 35
Round

Se
co
nd

s

Figure 7: Time spent on eliciting expectations. 𝑁 = 60 observations per round from rounds 1–30 and 𝑁 = 24
observations in periods 31–36.

The round number corresponds to the number of times the participants have forecast the ex-
periment. The first column (I) shows that the elicitation time decreases by approximately 2
seconds per round for the first 3 rounds, after which it drops by 1.5–1 seconds for rounds 4–15.
This indicates that participants spent some time getting acquainted with the elicitation tool,
but they were relatively quick to learn how to use it.

Column (ii) includes individual fixed effects for each participant (the coefficients are omitted
from the table as there are 60 different individuals). As can be seen, the main conclusion holds:
time spent is decreasing with repeated usage of the module, but is more pronounced in the
first rounds. Column (iii) and Column (iv) include additional fixed effects. The results are not
statistically different from the basic result in Column (I).7

In summary, Figure 7 and Table 1 show that the elicitation of participants’ expectations is fast
with the forecast.jsmodule, even in a relatively complex situation, and the time spent per
elicitation decreases with repetition.

7 In principle, more complex models could be used. In regressions not shown, we have included variables such
as the lagged difference between the realized price and the fundamental value, the volatility of forecasts in the
previous round, the correction needed to align the mean/median of the past forecasts with the realized prices,
etc. These variables do not have significant explanatory power and are thus not shown here.

14

Figure 7: Time spent on eliciting expectations. N = 60 observations per round
from rounds 1–30 and N = 24 observations in periods 31–36.

Elicitation time

(I) (II) (III) (IV)

Intercept 71.76***
(3.05)

t -2.23*** -2.34*** -3.31*** -2.72***
(0.30) (0.29) (0.37) (0.38)

t2 0.04*** 0.05*** 0.006*** 0.006***
(0.001) (0.001) (0.001) (0.001)

Participant FE Yes Yes Yes
Session FE Yes Yes
Market FE Yes Yes
Round FE Yes

Obs 1944 1944 1944 1944
R2 0.08 0.32 0.33 0.34

Table 1: Regression showing the impact of repeated use of forecast.js.

13

-2

0

2

5 10 15 20 25 30 35
Round

N
or
m
al
iz
ed

sc
or
e

Figure 8: Normalized scores over time. Each of the dots corresponds to a normalized score. Scores are nor-
malized within sessions. Each of the thin lines correspond to the score development of a single participant.
The thick line corresponds to the average development of scores. Scores are calculcated using the quadratic
scoring rule (1).

Thefirst column (I) in Table 2 displays a simple relationship between the round number and the
scores. The result shows that is no relationship between the timing and the score. Column (ii)
adds participant fixed effects and the results are unchanged. Column (iii) adds additional ex-
planatory variables. Firstly, the bias, which is the difference between the realized equilibrium
price and the fundamental value, 𝑝𝑡−1 − 𝑓𝑡−1, measures how far the price is from the rational
equilibrium path. The second control is𝛥𝑝𝑡−1, which is the change in the price in the last period
compared with the period before that, thus capturing how fast the price is changing. Finally,
𝑝𝑡−1 − ̄𝑟𝑡−1 measures the difference between the realized price in the previous period and the
mean of participant 𝑖’s last expectation distribution. This is a measure of how far off the partici-
pant was in the previous period. While two of these measures are statistically significant, there
are still no direct timing effects, as shown by the statistically insignificant result with respect
to the timing variables. Column (iv) and Column (V) add additional fixed effects. Again, the
result suggests that the number of times does not affect the precision.

The fact that the relationship between the round number and the score is negative may have
to do with the underlying experiment, in which bubbles tend to occur towards the end of the
markets. There is no evidence of any significant dynamic effects, as shown by the coefficient

17

Figure 8: Normalized scores over time. Each of the dots corresponds to a
normalized score. Scores are normalized within sessions. Each of the thin lines
correspond to the score development of a single participant. The thick line
corresponds to the average development of scores. Scores are calculated using
the quadratic scoring rule (1).

Table 1 shows some specifications in which the time (in seconds) spent using
the tool is regressed on the round, t, and a quadratic component, t2. A set
of fixed effects is included, to account for participants’ characteristics and the
experiment. The data contains a total of 1944 observations, split across 60
participants. The round number corresponds to the number of times the par-
ticipants have forecast the experiment. The first column (I) shows that the
elicitation time decreases by approximately 2 seconds per round for the first 3
rounds, after which it drops by 1.5–1 seconds for rounds 4–15. This indicates
that participants spent some time getting acquainted with the elicitation tool,
but they were relatively quick to learn how to use it. Column (II) includes
individual fixed effects for each participant. As can be seen, the main conclu-
sion holds: time spent is decreasing with repeated usage of the module, but is
more pronounced in the first rounds. Column (III) and Column (IV) include
additional fixed effects. In summary, Figure 7 and Table 1 show that the elici-
tation of participants’ expectations is fast with the forecast.js module, even in
a relatively complex situation, and the time spent per elicitation decreases with
repetition.

4.4 Prediction precision over time

It is important that the elicited expectations are consistent across the experi-
ment and that the quality of the elicitation is not hindered by the complexity

14

of the elicitation tool. In this section it is examined whether people tend to
perform better as they gain experience with the elicitation tool. Figure 8 dis-
plays normalized scores across sessions for each period. The thick line displays
the overall trend, which gives equal weight to each observation. The thin, gray
lines are the trend lines for each of the 60 participants. The main message is
that, on average, participants do not improve at forecasting. One interpretation
of this result is that the learning curve for the module is not steep. This is a
desirable quality, as it implies that one can interpret the participants’ expecta-
tions equally, irrespective of where in the time spectrum they were elicited. We
also explored learning effects via a regression of individual scores (as computed
by the quadratic scoring rule) with round number, individual fixed effects, and
several measures of forecast biases. We find no direct timing effects.

5 Conclusion

This paper introduces a new module for eliciting expectations from participants
in economic experiments. It can be applied to a wide array of economic problems
in both microeconomics (voter turnout, fairness, collusion) and macroeconomics
and finance (inflation, credibility, asset markets).

The module enables researchers to elicit full subjective probability mass func-
tions of individual expectations and allows to take into eliminate the prob-
lems of risk attitudes and hedging. The module can be easily incorporated in
HTML-based frameworks, such as oTree and can also be adapted to individual
experimenters’ needs.

Using real data, we show that participants tend to get faster at using the module
with repeated usage. This suggests that experimenters may use it to elicit
expectations several times. We also show that participants’ scores do not tend
to change significantly over time, suggesting that they are not improving at
making predictions.

References

Nicolás Aragón and Rasmus Pank Roulund. Certainty and decision-making in
experimental asset markets. Thesis chapter, European University Institute,
2019. URL http://pank.eu/experiment.

Olivier Armantier and Nicolas Treich. Eliciting beliefs: Proper scoring rules,
incentives, stakes and hedging. European Economic Review, 62:17–40, 2013.

Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. D3: Data-driven docu-
ments. IEEE Transactions on Visualization and Computer Graphics, 17(12):
2301–2309, 2011. URL http://vis.stanford.edu/papers/d3.

15

Daniel L. Chen, Martin Schonger, and Chris Wickens. oTree—an open-source
platform for laboratory, online, and field experiments. Journal of Behavioral
and Experimental Finance, 9:88–97, 3 2016.

Tim Chien and Robert Nyman. Css length ex-
plained. Mozilla hacks, Mozilla, 2013. URL
https://hacks.mozilla.org/2013/09/css-length-explained/.

Nobuyuki Hanaki, Eizo Akiyama, and Ryuichiro Ishikawa. Effects of differ-
ent ways of incentivizing price forecasts on market dynamics and individual
decisions in asset market experiments. Journal of Economic Dynamics and
Control, 88:51–69, 2018.

Glenn W. Harrison, Jimmy Mart́ınez-Correa, J. Todd Swarthout, and Eric R.
Ulm. Eliciting subjective probability distributions with binary lotteries. Eco-
nomics Letters, 127:68–71, 2015.

Glenn W. Harrison, Jimmy Mart́ınez-Correa, J. Todd Swarthout, and Eric Ulm.
Scoring rules for subjective probability distributions. Journal of Economic
Behavior & Organization, 134:430–448, 2 2017.

Edi Karni. Axiomatic foundations of expected utility and subjective probability.
In Mark J. Machina and W. Kip Viscusi, editors, Handbook of the Economics
of Risk and Uncertainty, volume 1, chapter 1. North Holland, 2014.

James E. Matheson and Robert L. Winkler. Scoring rules for continuous prob-
ability distributions. Management Science, 22(10):1087–1096, 1976.

Stefan Palan. A review of bubbles and crashes in experimental asset markets.
Journal of Economic Surveys, 27(3):570–588, 2013.

Leonard J. Savage. The Foundations of Statistics. John Wiley, New York, 1954.

Vernon L. Smith, Gerry L. Suchanek, and Arlington W. Williams. Bubbles,
crashes, and endogenous expectations in experimental spot asset markets.
Econometrica, 56(5):1119–1151, 1988.

16

6 Appendix

6.1 Using forecast.js in a standalone HTML page

In this section we show a minimal example of how to include the forecast module
on a plain HTML page.

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8">

<title>Forecast.js elictitation module</title>

<!-- Load the CSS styles needed for forecast.js -->

<link rel="stylesheet" href="forecast-js.css"/>

<!-- forecast.js depends on d3.js. -->

<!--I assume both are available in the "js" folder -->

<script type="text/javascript" src="/js/d3.v3.min.js"></script>

<script type="text/javascript" src="/js/forecast.js"></script>

</head>

<body>

<!-- First, a block with usage instructions -->

<div id="instructions">

<h2>Price prediction instructions</h2>

<p>

Use the forecast tool to predict future prices.

</p>

<p>

Make distrbutions by clicking on the gray boxes or by using

one of the predefined distribution available via the buttons

under the tool.

</p>

<p>

After you have made a distribution you can

change the location by dragging it with the mouse.

</p>

<p>

When you are satisfied with your choice click Finalize.

</p>

17

<p>

Note that once you have clicked finalized, the score is

available as a JSON string under the element with the

IDs <code>dist</code> and <code>value</code>.

</p>

</div>

<!-- The following will initialize the an instance of forecast.js -->

<script>

<!-- We can change the settings using pre-defined variables -->

var xname = "Price";

var xmax = 100, xbins = 10;

var alpha = 1, beta = 1;

<!-- Give the instance the id "forecast"; -->

<!-- Saving the instance as element "forecast_instance" -->

forecast_instance = add_forecast_widget("forecast");

</script>

</body>

</html>

6.2 Using forecast.js with oTree

In this section we show a minimal example of how to include the forecast mod-
ule in the experimental software suit oTree [Chen et al., 2016]. To initial-
ize oTree, set up a new virtual oTree environment, make a new oTree folder,
and install oTree. While the oTree manual explains this in detail, found at
https://otree.readthedocs.io/en/latest/install.html. The following should
suffice on UNIX-like systems:

First, create a new oTree environment and activate it

mkdir oTree; cd oTree

virtualenv3 env

source env/bin/active

Install the latest version of oTree

pip3 install -U otree-core

Create a new oTree instance

otree startproject elicitation-project

cd elicitation-project

Create a new "app".

18

otree startapp simple_elicitation

This initializes a new oTree installation in its own virtual environment and
creates a new oTree “app” called simple elicitation. This app contains
three important elements: the files models.py, pages.py, and the templates

folder.

First, create a new folder called static and copy d3.v3.min.js, forecast.js
and forecast.css into this folder.

The static folder holds images, style files and JavaScript programs. The Django
documentation of the static folder can be found here

https://docs.djangoproject.com/en/1.11/howto/static-files.

6.2.1 Setting up models.py

Next, we look at the models.py file. The models.py file defines and structures
the space in which the data is stored. For instance, it defines variables/columns
that are to be created in the database that stores the data. To store the elicited
forecasts from participants, we must thus create a field to store the elicitation
in. The forecast.js module automatically stores the elicitation in a JSON
array, stored as a string,as mentioned above. In the example below, the fields
pred and score in the player class are examples of how the elicitation results
can be stored.

The rest of the file is standard. The first part is imports and are mostly setup
automatically by oTree itself. In addition, some useful libraries and functions
are imported, starting with random.

In the Constants class of the file the variables for the forecast.js module can
be set up. The Player class sets up the fields in which participants’ data are
stored. In particular, in this example, the fields forecast.js pred and score

are stored per participant in the player class.

In the group class, we find the score and the correct number of points in the bin
in which the realized price fell.

-*- coding: utf-8 -*-

<standard imports>

from __future__ import division

from otree.db import models

from otree.constants import BaseConstants

from otree.models import BaseSubsession, BaseGroup, BasePlayer

from otree import widgets

from otree.common import Currency as c, currency_range

from django.conf import settings

</standard imports>

19

import random

import json

from bisect import bisect_left

from quantile import quantile

from django.core.validators import RegexValidator

author = ’Rasmus Pank Roulund and Nicolas Aragon’

doc = """

Showcase of forecast.js

"""

keywords = ("Forecasting", "Finance", "Elicitation", "Trade")

class Constants(BaseConstants):

players_per_group = None

Prediction parameters

prediction_kappa = 5

prediction_alpha = 6

prediction_beta = 20

xbins_n = 40

xmax = 400

xbins = range(0, xmax, xmax//xbins_n)

ybins_n = 100//5

class Player(BasePlayer):

<built-in>

subsession = models.ForeignKey(Subsession)

group = models.ForeignKey(Group, null = True)

</built-in>

Elicitation score and number of points in right bin

elicitaion_earning = models.CurrencyField(initial=c(0))

points_in_realized_price = models.PositiveIntegerField(initial=0)

pred = models.TextField(doc = "Allocation of prediction points",

validators=[RegexValidator(

regex=’\[([0-9]+ ?,? ?)+\]’)])

score = models.TextField(doc = "Scores assuming price in bin",

validators=[RegexValidator(

regex=’\[([0-9]+ ?,? ?)+\]’)])

20

class Group(BaseGroup):

<built-in>

subsession = models.ForeignKey(Subsession)

</built-in>

realized_price = max([random.normalvariate(150,50), 0])

def update_price(self):

"""Update the price, allowing for structural breaks"""

raise NotImplementedError

def calculate_elicitation_earnings(self):

"""Update the earnings from predictions in previous periods.

The predicted earnings are calculated for each round within

the current market and is calculated based on the player’s

predictions.

"""

pred_field = "pred"

score_field = "score"

Find the index of the bin with the realized price:

price = self.realized_price

pbins = Constants.pbins

N = Constants.ybins_n

realized_price_index = max(0, bisect_left(pbins, price)-1)

Now iterate over each player in the group and update the

variables for

- How many points they allocated correctly

-

for p in self.get_players():

preds = json.loads(getattr(p, pred_field))

scores = json.loads(getattr(p, score_field))

p.point_in_realized_price = preds[realized_price_index]

p.elicitaion_earning = scores[realized_price_index]

6.2.2 The pages.py file

To insert the module into the actual experiment, the module must be added to
the pages.py file. An example is included below.

21

-*- coding: utf-8 -*-

from __future__ import division

from . import models

from ._builtin import Page, WaitPage

from .models import Constants

from django.utils.translation import ugettext as _

import json

##* PREDICTION PAGES

class Prediction(Page):

"""Pages for making predictions.

Participants will make predictions for all future periods.

"""

form_model = models.Player

def get_form_fields(self):

"""Return a list of prediction fields to modify

Actually, it is not necessary to dynamically make this list...

"""

fields = ["pred"

,"custom_A", "custom_B"

]

return(fields)

def vars_for_template(self):

variables = {

"alpha" : Constants.prediction_alpha

"beta" : Constants.prediction_beta

"kappa" : Constants.prediction_kappa

"xmax" : Constants.xmax

"xbins_n" : Constants.xbins_n

"ybins_n" : Constants.xbins_n}

return(variables)

def error_message(self, vals):

"""Make sure that predictions do not exceed 100%.

Add check in case somebody is altering variables with the

JavaScript console.

"""

22

preds = {key: vals[key] for key in vals.keys()

if key.startswith("pred")}

for pred in preds.values():

p = sum(json.loads(pred))

if p > Constants.ybins_n:

return (_("You have assigned more than 100%!"))

elif (p < Constants.ybins_n):

return (_("Not all points have been assigned."))

class Results(Page):

"""This page shows the earnings in a single round of the market."""

timeout_seconds = 45

def vars_for_template(self):

m, r = Constants.interpret_round[self.subsession.round_number]

change = self.group.equilibrium_price * self.player.shares_change

temp_vars = {

"total_cash_earning": (self.player.dividend_earnings + change),

"asset_trading": change}

if r >= 3:

temp_vars["timelimit"] = 30

return (temp_vars)

class OneMoreRoundP(Page):

"""Ask if the player wants one more round"""

def is_displayed(self):

return(False)

class FinalResult(Page):

"""Show the results of all """

def is_displayed(self):

return(False)

page_sequence = [Prediction,

Results,

OneMoreRoundP,

FinalResult]

23

6.2.3 Display forecast modules on the pages

The HTML template may be added using a code similar to the following ex-
ample. This adds the forecast element to a page while using the experiment’s
favorite parameters. If the page is saved as, for instance, InsertForecast.html,
it can be “called” from other pages by issuing the following Django template
command:

{% include ’asset_simple/InsertForecast.html’ %}~

{% load staticfiles otree_tags %}

{% load staticfiles %}

{% load i18n %}

<!-- Hidden fields to store predictions -->

{% for field in form %}

{{ field.as_hidden }}

{% endfor %}

<script type="text/javascript" src="{% static ’asset_simple/d3.v3.min.js’ %}"></script>

<link rel="stylesheet" href="{% static ’asset_simple/forecast_style.css’ %}">

<script>

var alpha = {{ alpha }};

var beta = {{ beta }};

var kappa = {{ kappa }};

var xmax = {{ pmax }};

var xbins_n = {{ xbins_n }};

var ybins_n = {{ ybins_n }};

var forecast_div_elm = "forecast_widgets_container";

</script>

<script type="text/javascript" src="{% static ’asset_simple/forecast.js’ %}"></script>

<div id = "forecast_widgets_container">

</div>

<script>

forecast_instance = add_forecast_widget("forecast");

</script>

24

